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Abstract

The construction of interactive server-side Web appli-
cations differs substantially from the construction of tradi-
tional interactive programs. In contrast, existing Web pro-
gramming paradigms force programmers to save and re-
store control state between user interactions. We present an
automated transformation that converts traditional interac-
tive programs into standard CGI programs. This enables
reuse of existing software development methodologies. Fur-
thermore, an adaptation of existing programming environ-
ments supports the development of Web programs.

1 Designing Web Programs

The need for generating Web information on demand is
obvious. One page may need the current time and date;
another page may include results from a database query; a
third page may display the current status of the server. Since
such programs compute small amounts of information and
produce not much more than a single Web page, people call
themscripts.

Following a long-standing tradition in computing, Web
scripting has grown up. These scripts have now turned into
serious, maintained programs that sometimes represent the
raison d’être of a commercial establishment. Consumers
can find on-line stores, e-mail clients, interactive games,
and more implemented with a Web interface. In other
words, instead of writing Webscripts, programmers now
design, implement, and maintain interactive Webprograms
with complex and multi-layered interface protocols. Thus,
all the usual software engineering concerns about evolving
maintainable code to match growing requirement specifica-
tions apply.

Furthermore, the designers of complex, interactive
server-side Web programs face an additional software
engineering problem when using existing technology. Most
dialogs consist of many interactions, where each interac-
tion presents a form and processes the user’s response.
However, Common Gateway Interface (CGI) programs
halt after processing a single form. Similarly, Java servlet
methods return upon handling inputs from a single form.
Java Server Pages also force programmers to contort their
code to respond with a single page in response to a single
interaction with the user. Since all widely used Web
technologies suffer from the same problem of forgetting
control information between interactions, the rest of this
paper’s discussion of CGI programs applies equally well to
other standards.

To force the interactive nature of programs into the Web
programming mold, an interaction is implemented by hav-
ing a script deliver a Web page, wait for the consumer
to submit a response, and then process that response with
a(nother) script. Complicating matters even more, the Web
programs must accommodate consumers who backtrack in
their interactions, clone their browser windows, re-submit
the same or different answers for any given form, and so
on. In short, a Web program and a consumer make up a
pair of coroutines where each interaction point can be re-
sumedarbitrarily often. However, due to the lack of these
multiply-resumable coroutines or similar constructs in most
Web programming languages, the designer cannot match
the structure of the interaction with the structure of the pro-
gram. These requirements result in ad hoc mechanisms to
save and restore control state that are difficult to develop,
maintain, or explain to colleagues.

In this paper, we show that Web programmers can use
existingsoftware engineering methods to develop interac-
tive programs and that well-known, automatable transfor-
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mations cangeneratestandard CGI scripts from these pro-
grams. Specifically, we extend a programming language
with a primitive for Web interactions and show how this
extension simplifies the design, development, and mainte-
nance of interactive Web programs; how it allows program-
mers to migrate legacy programs to the Web; how the result-
ing programs manage the two kinds of information flows
found in Web programs; and how we can adapt existing
programming environments in support of this development
style.

The remainder of this paper is organized as follows. The
second section of this paper is a brief introduction to con-
ventional Web programming. The third section presents the
central ideas of the paper: the new I/O construct and its
implementation. The fourth section illustrates that when
Web programs are just interactive programs, programmers
can develop, test, and debug them in ordinary program-
ming environments, enriched with a small run-time exten-
sion. The fifth section outlines how we have implemented
our ideas in Scheme [7], so that we can test each develop-
ment stage. The work does not rely on Scheme’s advanced
control constructs, however. The sixth section discusses re-
lated work. We discuss in the seventh and last section how
our ideas carry over to many other programming languages,
even those without Scheme’s advanced control constructs,
and how they are useful even in the absence of tool sup-
port.

2 Interactive CGI Programs

A typical interactive program performs a series of computa-
tions interspersed with interactions with the user. Each in-
teraction requests information using HTTP’s GET or POST
methods [13] and waits for the user’s response. After the
last interaction, the program produces the final result. This
section demonstrates how programmers port interactive ap-
plications to the Web, first via conventional means and then
in a more direct manner.

2.1 Conventional CGI Programs

Figure 1 presents a trivial interactive Scheme program
that requests two numbers, adds them, and displays the re-
sult. The footnoted boxes only exist for explanation pur-
poses; they are not part of the program text. Convert-
ing even this simple program to function as a Web script
complicates the code tremendously. According to the CGI
standard, every time the program sends an HTML form
to the consumer’s browser, the CGI program terminates.
When the user submits a response to the form, the server
starts the CGI script that the form specified as its processor.
That is, if an interactive program contains asingle input
request, its equivalent CGI script consists of two separate
fragments. The problem is, however, even more complex

than that because the consumer may use the back-button to
return to a page and may re-submit the same or different an-
swers. Worse, using the new window functionality to clone
a browser, the consumer can submit two responses to a sin-
gle form (more or less) simultaneously.

To accommodate these uses, a programmer must—at
least conceptually—turn an interactive program into a
coroutine; the consumer plays the role of the second
coroutine. One way to accomplish this is to separate the
program into several fragments, one per interaction and
one for the last step. When a fragment has finished its task,
the execution stops. All information from one program
fragment required by some later fragment must be com-
municated explicitly. All the methods for communicating
with the next fragment marshal the data into a string and
transmit it in a hidden HTML field, in a cookie, or save it
in a file on the server.

Figure 2 shows the addition program converted into a
CGI program. Because the original addition program con-
tains two interactions, the corresponding CGI version con-
sists of three fragments, re-integrated into a single program
via a conditional. The invocation ofget-bindingsextracts the
bindings from the Web form, which the CGI program then
tests for three conditions:

1. If there are no bindings, the program starts from the
beginning. It creates a Web page with a question, a
hidden field that specifies the resumption point, and
the list of values that are supposed to be hidden in the
Web page.

2. If the program can extractFIRST-STOPfor ’ resume-at,
then it was invoked with a first input. It produces a sec-
ond form and queries the consumer for another num-
ber.

3. Finally, if the program extractsSECOND-STOPfor
’ resume-at, it has obtained both numbers and can
produce the sum.

As the computation unfolds, all necessary values are passed
explicitly from one stage to the next as in a bucket brigade.

Clearly, the structure of the CGI program radically dif-
fers from that of the original version—indeed, it is basically
inverted1—yet their behavior per se is identical. The in-
verted structure of the second program is necessary because
of the constraints of the CGI standard and the capabilities of
the browsers. In particular, a consumer can create a “curried

1M. Jackson [22] recognized a similar structural problem in the early
1970s. When COBOL programs consume tree-shaped data in one file and
produce a different tree-shaped form of data in another file,it is best to
think of the program as two coroutines. Since COBOL doesn’t support
coroutines, he inventedprogram inversion, a technique for providing sim-
ple coroutine-like procedures in programs that don’t support such forms of
control.
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;; prompt-read : String! Value
;; read a Scheme value
(define(prompt-read question) ;; defines the functionprompt-read

(display question)
(read))

;; main

( display 3
(+ (prompt-read "Enter the first number to add:") 1

(prompt-read "Enter the second number to add:") 2))

Figure 1. An Interactive Addition Program

;; produce-html : String String(listof Value) ! void
;; effect: to write a CGI HTTP header and HTML Web form
(define(produce-html question mark free-values) . . . ) ;; body uninteresting

(defineFIRST-STOP"first number done")
(defineSECOND-STOP"second number done")

(definebindings(get-bindings))

;; main
(cond ;; each bracketed clause is a question-answer pair;

;; in this instance, all answer expressions are boxed
[(empty-bindings? bindings)

(produce-html"Enter the first number to add:" FIRST-STOP’()) 1]

[(string=? (extract-binding/single’continue-at bindings) FIRST-STOP) ;; ’continue-at is asymbol, a string optimized for equality comparison

(produce-html"Enter the second number to add: " SECOND-STOP
(list (list ’first-number (extract-binding/single’ response bindings)))) 2]

[(string=? (extract-binding/single’continue-at bindings) SECOND-STOP)

(display (+ (string! number (extract-binding/single’first-number bindings))
(string! number (extract-binding/single’ response bindings)))) 3])

Figure 2. A CGI Version of Figure 1

adder”2 using the back button to re-enter different values for
the second argument. The situation only grows more grim
as the number of interactions increases. In general, the pro-
gram may loop, requesting an arbitrary number of inputs.
This necessitates constructing a single branch that handles
many responses, remembering the state of the iteration and
an unbounded number of intermediate values.

Performing this restructuring manually easily leads to
errors. One of the authors recently renewed two Internet
domain name registrations. The penultimate page of the
registration program indicated that the user should wait for

2A curried function accepts some prefix of its arguments and returns a
new function that accepts the remaining arguments.

the server to finish processing the renewal request. After a
moment, it automatically proceeded to the final page, con-
firmed the renewal, and billed the author’s credit card. Ac-
cidentally hitting the back button returned to the processing
page, which billed the credit card again, renewing the do-
main names for a second year.

In principle, the CGI programs are systematically related
to the “direct style” interactive programs that use plain in-
put and output primitives. While CGI programmers cur-
rently structure each script independently, we propose that
the software construction process should take advantage of
this relationship. The next sections demonstrate how to au-
tomatically transform a direct-style program into a CGI pro-
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gram, with no intervention from the programmer

2.2 Direct-Style CGI Programs

Software engineers have learned how to develop and
maintain sequential interactive programs. Hence, if they
could develop interactive programs and use them as CGI
scripts, they could reuse the software engineering tech-
niques for interactive programs in this chaotic world of Web
programming.

Since CGI programs run in the context of a Web
server, a custom server can provide CGI programs with re-
implementations of primitives such asdisplay or prompt-read.
A specialized version ofprompt-read can capture the current
control state as a continuation [33] value, using Scheme’s
call/cc construct. The server can store this continuation for
later resumption. The server associates the continuation
with a new URL that accepts the inputs from a Web form.
When the consumer submits a response to this Web form,
the browser issues a request for the URL that is associated
with a continuation. This request and all future requests for
the URL resume the continuation with the data from the
Web form. In particular, because a Scheme continuation
can be invoked an arbitrary number of times, the consumer
can respond to the same Web form a multiple number of
times and thus resume a continuation as often as desired.

Prior work [19, 28] implements this approach and
demonstrates its advantages. In addition to facilitating
program construction, the modified Web server yields
superior speed for CGI scripts compared to several existing
methods.

Unfortunately, the approach has two severe problems
in theory. First, it requires a server written in a language
with advanced control features such as continuations. Sec-
ond, the URLs for continuations act as persistent refer-
ences to storage within the server. This results in a dis-
tributed garbage collection problem with no support from
the browser. In fact URLs may be in bookmark files, hu-
man minds, and other media. One way to address this prob-
lem is to impose timeouts. That is, the server disposes of
unused continuations after some given amount of time. Un-
fortunately, time-outs don’t solve the problem. If a timeout
is too large, the server consumes too much memory. If it is
too short, it forces consumers to restart computations from
the beginning too often. It also makes the consumer de-
pend on the reliability of the server, which may restart due
to power failures or software upgrades.

Several months of actual experience using the server for
an outreach project’s Web sites [1, 2] revealed that problems
with timeouts matter in practice.3

3Also, because the generated URLs encode enough informationto
identify the instance of the program, its continuation, anda random key,
they are too long for some email clients, which mangled them.Some users
reported problems copying the URLs because of this.

� One of the sites contains a workshop registration form
with a timeout of 24 hours. This sufficed for most re-
spondents; a few, however, had to request an extension
due to a snow-storm that interfered with their Internet
access. Unfortunately, not even the site operator can
resurrect a continuation that the server has discarded.� On another occasion, one of the authors copied the first
page generated by the registration program to a differ-
ent file. Initial testing suggested that the copied page
functioned correctly, yet a few days later several work-
shop administrators indicated otherwise. Even though
neither the code nor the static pages changed, the form
ceased to function since the continuation had timed
out.

3 Generating CGI Programs

The theoretical and practical problems with the server-
based approach forced us to consider an alternative imple-
mentation technique. This section describes this new ap-
proach, first for purely functional programs, and then for
programs utilizing a mutable store.

3.1 Functional CGI Programs

Removing timeouts would eliminate many of the prob-
lems encountered with our custom Web server. Since
timeouts reclaim resources on the server consumed by
suspended continuations, an alternate implementation that
saved control state on the client would render timeouts un-
necessary. To eliminate the uses ofcall/cc to suspend con-
tinuations, we utilize techniques for compiling functional
programming languages. More specifically, we employ
three well-known transformations to automatically create
the control flow required for Web applications:

Continuation Passing Style (CPS) [15] eliminatescall/cc

by representing the control state of a program explic-
itly. In particular, each function of the program now
consumes one additional argument: another function
representing the continuation. A function that must
grab the continuation and store it for future use can
simply refer to this new argument. In our case, a re-
implementation ofprompt-read can turn its new argu-
ment into a resumption point, that is, a point from
where the program can be restarted.

Lambda lifting [24] turns the resumption points into inde-
pendent functions that can be moved to the top level,
making them accessible to the code handling the next
interaction.

Defunctionalization [30] changes the representation of
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(define-struct closure(code env))
;; Closure= (make-closure Int Env)
;; Env= (listof Value)

;; apply-closure : Closure(listof Value) � ! Value
(define(apply-closure f. args)

(apply ;; supplies the arguments
(apply ;; supplies the environment

(vector-ref closures(closure-code f))
(closure-env f))

args))

;; the converted functions and continuations
(defineclosures

(vector
(lambda () ;; the environment (in this case, empty)

(lambda (response1) ;; the argument
(prompt-read-k"Enter the second number to add:" (make-closure1 (list response1)))))

(lambda (response1) ;; the environment (in this case, holds the previous argument)
(lambda (response2) ;; the argument

(display (+ response1 response2))))))

;; prompt-read-k : String Closure! void
(define(prompt-read-k s k)

(display s)
(apply-closure k(read)))

;; main
(prompt-read-k"Enter the first number to add:" (make-closure0 empty))

Figure 3. The Compiled Version of Figure 1

higher-order data, such as closures4 and continuations,
into a first-order form. By choosing portable con-
crete representations (in this case, vectors), we can cor-
rectly marshal these kinds of higher-order data. Using
defunctionalization, the script writes the continuation
into a hidden field of a Web form and uses it later to
restart its computation.

CPS’ing, lambda lifting, and defunctionalizing partitions a
program into separate interactive steps, so computation can
halt conveniently between them. Small changes then con-
vert the program into a standard CGI script.

We explain the process with the trivial but illustrative
example from figure 1. The result of these three automated
translation steps is shown in figure 3. This interactive pro-
gram requires one final step to become a CGI program. The
revision in figure 4 demonstrates the result of systematically
transforming the compiled version into a CGI script. The
result is structurally almost identical to the hand-coded ver-
sion of figure 2.

4Closures are functions that remember the lexical context oftheir cre-
ation. They usually consist of an environment and a code pointer.

The details of the process are as follows. The first step
produces a CPS’ed version of the program. Here is our run-
ning example:

(prompt-read-k"Enter ... first ... "
;; lambda declares anonymous, first-class functions
(lambda (res1)

(prompt-read-k"Enter ... second ...:"
(lambda (res2)

(display (+ res1 res2))))))

where

;; prompt-read-k :
;; String (Value! Value) ! Value
(define(prompt-read-k s k)

(display s)
(k (read)))

The CPS converter must supply alternate implementations
of primitives. CPS’ed versions of higher-order primitives
that accept (or return) call-backs must supply a continuation
to their argument, which may after all contain resumption
points. External modules that accept function arguments
must be transformed as well.

Lambda lifting turns anonymous functions into globally
defined functions. It thus allows the compiled CGI program
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(define-struct closure(code env))
;; Closure= (make-closure Int Env)
;; Env= (listof Value)

;; apply-closure : Closure(listof Value) � ! Value
(defineapply-closure. . . ) ; as in figure 3

(defineclosures. . . ) ; as in figure 3

;; replaced:
(define(prompt-read-k s k)

(produce-html s(closure-code k) (closure-env k)))

;; added:
;; produce-html : String String(listof Value) ! void
;; effect: to write a CGI HTTP header and HTML Web form
(define(produce-html question mark free-values)

. . . )

(definebindings(get-bindings))

;; main
(cond

[(empty-bindings? bindings)
(prompt-read-k"Enter the first number to add:" (make-closure0 empty))]

[(string=? (extract-bindings/single’ resume-at bindings) "0")
(apply-closure(make-closure0 (create-env-from-strings(extract-bindings/single’env bindings)))

(extract-binding/single’ response bindings))]
[(string=? (extract-bindings/single’ resume-at bindings) "1")
(apply-closure(make-closure1 (create-env-from-strings(extract-bindings/single’env bindings))

(extract-binding/single’ response bindings))])

Figure 4. The CGI Version of Figure 3 (Compare with Figure 2)

to resume a continuation with a call to a global function.
Each expression of the form

(lambda hargsi hbodyi . . . )

is replaced with

((lambda hfree-varsi
(lambda hargsi hbodyi . . . ))hfree-varsi)

wherehfree-varsi is the list of free variables inhbodyi . . .. This
new function is closed, so it can be safely lifted to the out-
ermost lexical scope.

For our running example, this step yields

(defineclosure1
(lambda ()

(lambda (res1)
(prompt-read-k"Enter ... second ...:"

(closure2 res1)))))

(defineclosure2
(lambda (res1)

(lambda (res2)
(display (+ res1 res2)))))

(prompt-read-k"Enter ... first ...:" (closure1))

Usingclosure1andclosure2we can now run the program from
different resumption points, turning the original program
into a curried adder just as the back button on a Web browser
does.

Figure 3 shows the result of the final compilation step,
namely of converting closures into structures; function ap-
plications are performed byapply-closure. The step is nec-
essary for two reasons. First, Web forms must refer to a
specific resumption point (closure) within a program, but
Web forms can only contain strings. A unique symbolic
code, such as an index into a vector of closures, satisfies
this requirement. Second, some closures may survive an
interaction with the consumer, which means that their en-
vironment must be marshaled into strings for hidden fields
and unmarshalled upon resumption. Since all closures have
been converted into first-orderclosurestructures, a function
such asprompt-read can write a closure into the hidden field
of a Web form and the CGI program can read this closure
and apply it. Specifically, the code pointer of the continu-
ation describes what subprogram to invoke next. The con-
tinuation’s environment captures any values needed by the
next subprogram instead of explicitly passing them in hid-
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den fields.
Up to this point, the transformation produced a semanti-

cally equivalent program, so the result is a normal interac-
tive program. To produce a CGI program, we replace two
fragments of the defunctionalized program. The definition
of prompt-read changes and now marshals the continuation
into a Web form, prompts the user with a form, and then
exits. The main program changes to the text of figure 4.
In other words, the program first checks the form bindings
for the continuation fromprompt-read. If it exists, the con-
tinuation is resumed via a closure application. If not, the
invocation starts from the beginning.

To prove the well-behaved nature of our transformation,
we would need to construct a modified notion of observa-
tional equivalence that accounts for the differences in the
two programs. Intuitively, disallowing the client’s use of
the back button, cloning, and bookmarking facilities would
force each continuation resumed to be the last one sus-
pended, thus maintaining the same control flow as the orig-
inal interactive program. More formally, this notion of
equivalence would restrict the contexts used for observa-
tions to only include streams of inputs where each continu-
ation in the stream must match the one produced from pro-
cessing the stream up to that point. Since each transfor-
mation step preserves either full or restricted observational
equivalence, the entire process would preserve the restricted
form of equivalence. We intend to investigate a formal proof
along these lines in future work.

Security

Recording the continuation in the client and retrieving it
introduces two security issues. First, malicious users canal-
ter the continuation, resulting in unexpected behavior. Sec-
ond, curious users can inspect the continuation’s free vari-
ables, possibly revealing confidential information.

Existing cryptographic solutions remedy both these
problems without introducing more than a fixed amount of
server-side state. Appending the marshalled continuation
with a keyed hash [3] would allow the unmarshaller on the
server to verify the continuation’s integrity. Encryptingthe
continuation using a block cipher with a random key kept
only on the server would prevent users from inspecting
the continuation. The system could generate the necessary
keys on a system wide or per-program basis, avoiding
excess server-side state. One mode of the proposed Ad-
vanced Encryption Standard [9] simultaneously does block
encryption as well as message authentication in one (highly
parallelizable) operation.

3.2 Compiling Stateful CGI Programs

While generating CGI programs from interactive functional
programs is almost a routine task with functional compi-

(definebox-0(box0))
(definebox-1(box0))
;; main
(begin

(set-box! box-0(prompt-read "Enter the first number to add: "))
(set-box! box-1(prompt-read "Enter the second number to add: "))
(show (+ (unbox box-0) (unbox box-1))))

Figure 5. A Stateful Interactive Program

(define-struct closure(code env))
;; Closure= (make-closure Int Env)
;; Env= (listof Value)

;; apply-closure : Closure(listof Value) � ! Value
(defineapply-closure. . . ) ; as in figure 3
(defineclosures(vector . . . ))

;; replaced:
(define(prompt-read-k s k)

(produce-html s(closure-code k) (closure-env k)))

;; added:
;; produce-html : String String(listof Value) ! void
;; effect: to write a CGI HTTP header and HTML Web form
;; including a cookie containingthe-boxes
(define(produce-html question mark free-values)

. . . (write-boxes-to-cookie the-boxes). . . )

(definebindings(get-bindings))

;; the-boxes :(vectorof Value), the current store
(definethe-boxes

(if (empty-bindings? bindings)
(initialize-the-boxes)
(read-boxes-from-cookie)))

;; initialize-the-boxes :! (vectorof Value)
;; create a new store plus a sequence number

;; read-boxes-from-cookie :! (vectorof Value)
;; turn a cookie into a store, check sequence number using a lock file

;; write-boxes-to-cookie :(vectorof Value) ! void
;; turn a store into a cookie, increment sequence number using a lock file

;; main
(cond

[(empty-bindings? bindings)
(apply-closure(make-closure0 empty) (box0))]

[else
(apply-closure

(make-closure
(string! number (extract-bindings/single’continue-at bindings))
(create-env-from-strings(extract-bindings/single’env bindings)))

(extract-binding/single’ response bindings))])

Figure 6. Its CGI Version
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lation techniques,internal5 assignments in the interactive
program pose an interesting challenge. The first prob-
lem is due to plain variable assignments—set! in Scheme—
because lambda lifting assumes that copying bindings is ac-
ceptable. We must therefore eliminate all assignment state-
ments with a transformation that replaces mutable variables
by boxes,6 assignments to variables with assignments to
boxes, and references to such variables with dereferences
of boxes. Furthermore, the CGI program generator must
know all boxes that the original program uses (or implicitly
introduces). Figure 5 contains an imperative version of our
example converted to use Scheme boxes.

The second problem is much more severe. Semantically,
assignments introduce an additional element: the store.
Roughly speaking, the store is threaded through the pro-
gram, independently of the control state. In particular, when
a Scheme program invokes the same continuation twice, the
store of the second invocation reflects all the store updates
since the first invocation. Modifications of the store survive
continuation capture and invocation.

A consumer who invokes the same continuation twice
via a Web form should also see that the store modifications
of the first invocation survive when the second invocation
is launched. This requirement implies that a CGI program
must deal with the store differently than with the environ-
ment of a closure. In particular, it is wrong to place the
current store into a hidden field of a Web form. After all, if
the consumer cloned the page, the browser would also copy
the store, and two submissions of the form would submit
the same store twice.

Still, we must choose where to remember the current
store when we suspend a CGI program. We could either
place the store on the server or on the client machine. As we
already know from the discussion of the placement of con-
tinuations, the server is ill-suited for this purpose.7 Hence,
we must turn the store into a datum that is sent to, and then
stored on, the consumer’s machine—but not inside the Web
page.

This reasoning leaves us with the single choice of turn-
ing the store into a browser “cookie” and placing this mar-
shalled form into the consumer’s cookie file. Unlike hidden
fields, they are independent from any particular page, so
changing continuations via the back button does not affect
the store. Figure 6 sketches the cookie-based translation of
figure 5.

Although this naı̈ve cookie solution sounds straightfor-
ward, it has two imperfections. The first one, which is mi-
nor, is a the restriction that Web browsers have a limit of

5We ignore modifications of data inexternalentities, say the server file
system or a database, because this topic is well-understood.

6Boxes in Scheme are akin to wrapper classes in Java.
7Avoiding server-side state also facilitates replicating the server across

several machines. Although outside the scope of this paper,replication
improves industrial servers’ load balancing and fault resistance.

80kB of storage for cookies per host name [26]. In prin-
ciple, a limit like this is no different than a limit on heap
space for a conventional program, but the small size of the
limit will be problematic for some programs. As security
research improves, we expect cookies or some other mech-
anism to mature enough to lift these simplistic restrictions.
The second, more important, one arises because browsers
transmit cookies at the time they submit the Web request. If
the user submits simultaneous requests, the second request
processed by the server will contain an out-of-date cookie.
A naı̈ve implementation may thus lose updates to the store.

Our solution is to include a sequence number [29] with
the cookie store. A sequence number allows the CGI pro-
gram to detect race conditions. More specifically, the CGI
stub code stores a sequence number for each original invo-
cation (“session”) of a CGI program and uses this sequence
number to manage access to the store. If it ever obtains
a store with a sequence number less than the current one,
it asks the consumer to resubmit the Web form. Unfortu-
nately, the use of sequence numbers re-introduces the server
side storage management problem, though because the stor-
age needs for numbers are small, the problem is negligible.

In summary, the inventors of browsers created two mech-
anisms for threading information through Web computa-
tions. The two mechanisms are analogous to the two ways
information flows in a programming language semantics:
stores that accumulate over time and continuations with en-
vironments that grow and shrink. Our CGI compiler can
therefore use the browsers’ mechanisms to implement the
separate storage requirements for continuations and stores
in a systematic manner.

4 Developing CGI Scripts

Developing a conventional CGI program in standard pro-
gramming environments is difficult. To debug the program
properly, the developer should run the program as a CGI
script and interact with it through a browser. This is, how-
ever, a poor interaction environment. Instead of a proper
error message, the programmer sees responses such as

Internal Server Error....More
information about this error may
be available in the server error
log.

The server’s error log contains a corresponding report:

Premature end of script headers

followed by the name of the program. The programmer can
infer from this that the CGI program didn’t output a valid
response before terminating, but little more.

Our compilation process introduces the additional prob-
lem that the code that is executed as a CGI script is not the
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Figure 7. CGI Error Reporting

direct-style code that the programmer wrote. Instead, the
programmer’s code is first transformed and then run under
the server’s control.

We can overcome both problems with a minor modifi-
cation of existing programming environments. The idea is
to provide a library that re-implements primitives such as
prompt-read so that the execution of the direct-style program
functions as if the CGI script were run. In particular, the
primitive communicates the given Web page to a browser,
and the browser communicates the submission of a Web
form to the these primitives. Furthermore, the new library
keeps track of the continuations ofprompt-read so that the
developer can truly simulate a consumer’s actions on the
browser.

To demonstrate this idea, we wrote a library (technically,
a Teachpack [14]) of interaction functions for DrScheme,
our programming environment [14] for Scheme. The re-
implementedprompt-read primitive uses a more general
primitive that accepts HTML pages (with forms); it grabs
the current continuation, stores it, and manages the commu-

nication with the browser. By switching Teachpacks, legacy
software can run either as a command line program or as a
Web application.

All of DrScheme’s tools are now available to the devel-
oper of a CGI script. For example, DrScheme’s error report-
ing works properly. Suppose the developer forgets to deal
with illegal inputs explicitly and instead relies on Scheme’s
primitives to read the submitted strings (all Web inputs are
strings) as numbers. Then the program raises an exception
for ill-formed inputs, and DrScheme highlights the place
where the program raised the exception as if the program
were an ordinary interactive program. See figure 7 for an
illustration.

Consider the more complex example of DrScheme’s
single-step debugger [6]. The tool reduces Scheme pro-
grams according to Scheme’s reduction semantics [12]. A
developer may wish to use the stepper to understand the ac-
tions on a step-by-step basis. The stepper already accounts
for library calls as atomic function calls, so that it properly
displays transitions of CGI programs—including input and
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Figure 8. CGI Stepping

output steps. See figure 8 for an illustration of this capabil-
ity.

In general, our methodology for developing CGI pro-
grams permits the use of conventional software engineering
methods for interactive programs and the use of systemati-
cally enriched programming environments. We believe that
our ideas thus bring rigorous order to the world of CGI pro-
gramming.

5 Implementation Status

Both the CGI compiler and the CGI Teachpack for
DrScheme exist in prototype form. Our prototype CGI com-
piler operates on R4RS [7] programs with some minor re-
strictions. We have developed a number of examples in this
context, plus one full-fledged application: the teacher en-
rollment dialog for an outreach project.

The marshaling primitives use the existing PLT Scheme
printer, which automatically takes care of sharing and cy-
cles in the reading and writing of environments and cookies.
The encoding could benefit from a type-specific compres-
sion step [23] to reduce network traffic and the amount of

data that is stored in cookies. We use the CPS conversion of
Danvy and Filinski to avoid introducing administrative beta
redexes [10, 31].

6 Related Work

Programmers building imperative-style programs in
purely functional languages use a technique based on the
mathematical theory of monads. Hughes [20], in devel-
oping his theory of arrows, a generalization of monads,
describes how to implement interactive CGI programs
using arrows. His key insight is to provide a mechanism
that at each interaction point turns the current continuation
into a datum for the Web page. This requires an operation
on continuations not supported by most languages with
continuations. Similarly, Queinnec [28] advocates using
call/cc to implement interactions between Web servers and
consumers. His method requires the modification of a
server that can store continuations.

Our research started as an exploration of these two pub-
lications. We diagnosed the short-comings of these ap-
proaches, namely, that the arrow solution deals with stores
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improperly and the time-outs, based on our experience,
dog continuation objects in a Web server. Our solution
addresses both problems and overcomes these difficulties.
Furthermore, our work demonstrates that these ideas are ap-
plicable to all kinds of languages, not only functional lan-
guages supporting first-class continuations.

Graham [18] claims that the success of his Viaweb com-
pany, now Yahoo! Shopping, is due in part to the methodical
use of continuation-passing-style to construct Web applica-
tions. If this technique proves helpful when done manu-
ally, using our automated translation must be even better.
He does not explain how his company dealt with mutable
stores.

At first glance, a reader might suspect that the FastCGI
protocol [27] solves the problems of engineering CGI pro-
grams by explicitly waiting for a request in the middle of the
program. The FastCGI protocol starts a separate process on
the server for each Web program. The server forwards suc-
cessive requests to the FastCGI program, which sends the
responses back to the server. Since these programs wait for
a request, it appears at first that the programmer could do
more than the typical looping over requests at the start of
the program. One could attempt to construct an interactive
program by waiting for the next request at different points
in the computation. However, this approach only allows the
user to proceed forward through each interaction. Cloning
windows or using the back button will send the form data to
the wrong point, causing the FastCGI program to either not
find fields expected from the correct form or, even worse, to
misinterpret fields that accidentally coincide.

The Mawl system [4] uses this idea of a thread waiting
for requests at different points in the code to transparently
preserve program state across interactions. Since previous
pages representing old program state are no longer acces-
sible, users must restart transactions to correct mistakes.
Their experience indicates that users complained about this
inability to use the back button or the browser’s page his-
tory.

Java servlets [8] address performance issues in a man-
ner similar to FastCGI. Aside from the object-oriented inter-
face and libraries for constructing HTTP response headers,
servlets provide the same programming model as standard
CGI. Each incoming request invokes adoGet or doPost
method in the servlet from the beginning, leaving the task
of restoring the appropriate control context to the program-
mer. It may appear that servlets can avoid moving the store
into cookies by storing values in the servlet object’s fields.
However, the Web server has the option of garbage collect-
ing a servlet and creating a new one at any time. The server
also has the option of migrating the servlet to another vir-
tual machine, so data may not reside in static fields between
interactions either. TheHttpSession class provides a
mechanism for maintaining a dictionary from strings to Ob-

jects on the server and storing a reference to the dictionary
in a URL, cookie, or Secure Sockets Layer session. All the
problems with server-side state consuming memory or tim-
ing out remain.

The Java Platform Debugger Architecture [34] enables
Java development environments [5, 21, 35] to attach re-
motely to the JVM that the Web server uses to run servlets.
Although this reuses existing development environments to
debug Web applications by setting break points and display-
ing the source of exceptions, it does not assist the program-
mer with the convoluted structure of interactive servlets.

7 Conclusion

Our paper introduces an automated translation that im-
plements an interactive programming model for Web appli-
cations. This model matches the mental model of software
engineers accustomed to thinking about traditional interac-
tive programs. By avoiding the manual saving and restoring
of control state between interactions, the system not only
eases the initial software development, but also facilitates
maintenance and assists other engineers in understanding
the product. Software engineers can port legacy software to
the Web by using our transformation. Furthermore, bring-
ing this systematic order to the world of CGI programming
solves the problem of developing CGI programs. Futher-
more, our technique allows developers to use conventional
programming environments.

The automated translation produces CGI-compliant pro-
grams using CPS conversion, box conversion, lambda lift-
ing and defunctionalization, followed by the generation of
a little administrative stub code. The well-understood for-
mal nature of the first four steps justifies a high degree of
confidence in the translation process.

We can implement these transformations for languages
such as Perl [38], Python [37] and Java [17]. It is easy to
simulate closures with objects, but the lack of tail-call opti-
mization [25] makes it difficult to control stack growth. We
could use exceptions [16, 32] to ameliorate this problem.
Indeed, since Python now supports a form of continuation
operator [36], we can also turn IDLE [11] into a CGI de-
velopment environment. Even in the absence of such tools,
programmers can achieve a lesser degree of benefit by pro-
ceeding in a systematic manner and documenting the design
pattern.
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